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.

ON TWO-DIMENSIONAL FLOW AFTER A CURVED STATIONARY
SHOCK (WITH SPECIAL REFERENCE TO THE PROBLEM
OF DETACHED SHOCK WAVES)

By S. S. Shu
SUMMARY

The problem of two-dimensional flow behind a curved stationary
shock wave 1s consldered analytically. The method assumes a given
shock-wave shape, which automatically determines certain initial comn-
ditions on the flow variables; and the flow pattern, including any
body shape, follows from the initial conditions. Approximate analytic
expressions are found for the stream function in the subsonic region
following the shock and, after the stream function is obtained, the
flow density is determined by Bermoulli's equation which connects the
density with the derivatives of the stream function. The final solution
can then be determined from the velocity field thus obtained. )

INTRODUCTION

The problem of compressible flow after a curved shock wave has been
investigated by various authors (references 1 to 4). In the analytical
treatments, the main Interest has so far been concerned with the local
properties of the flow,  such as the relations between the gradients of
various physical and geometrical quantities along the shock wave and
those along the body.

The purpose of the present work is an attempt to treat analytically
the two-dimensional problem after the shock in the large. The method
assumes a glven shock-wave shape, which automatically determines certailn
initisl conditions on the flow variables. It is therefore a Cauchy
problem and the flow pattern, including any body profile, follows from
the assumed initisl conditions. Approximate analytic expressions for
the stream function are found for the compressible flow in the whole
subsonic region. The stream function thus found satisfies the exact
shock conditions but it satisfies the differential equation only approxi-
mately. After the stream function is obtained, the flow density 1s
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determined by the exact Bernoulli equation which connects the gas
density with the derivatives of the stream function. Then the sonic
line can be determined from the velocity field thus obtained.

The author wishes to take this opportunity to thank Professor
C. C. Lin for his valuable criticisms and discussions.

This work was conducted at the Massachusetts Institute of Technology
under the sponsorship and with the financlal assistance of the National
Advisory Committee for Aeronautics.

SYMBOLS
7 ratio of specific heats of fluids
Py free-stream pressure
Py free-stream density
U free-stream.velocity magnitude, assumed to be parallel
to x-axis
cq free-stream velocity of sound
F(plUy) function determining shock shafe (1)
(x0,0) shock nose when F(0) = 6
Po stagnation density after shock wavé
Co stagnation velocity of sound after shock wave

g2 = ¥,° + Wyz where ¢ is stream function

Q complex variable in hodograph plane
(gwx - iw&%/(dpozcoz - g2 + poc;))
?O(r) parameteric representation of a three~dimensional curve

with parameter =

p,Q complex varigbles
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x = L. F(pUy) + %, equation for shock
plU

My

¥(x,y)

tan T

K1,Kp
F(y)

#(x,¥)
h(9) -

Re

et e e e S e e A— e —

free-stream Mach number .((7pl/pl)’l/20 = U/cl)

stream function of flow after shock wave (plUy on
the shock) '

slope of shock wave at point on it
pressure after shock wave

density after‘shock wave

entropy function

function determining shock shape
constants defined by equétions (8)

velocity components of flow after shock wave

local velocity of sound after shock weve

maximum velocity magnitude of flow

_tangential and normal directions at point on shock wave

tangential and normel components of velocity of flow
immediately after shock wave

constants defined by equations (18)

analytic function in real variable ¥y
auxiliary function defined by equations (22)
arbitrary analytic function of Q

real part of a complex quantity
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/

k = plU/ poco

Z =X+ yi

£,(%) enalytic function for Weierstrass' parametric represen-
tation of & minimgl surface

t complex variable occurring in Weierstrass' formulas for
minimal surfaces

Im imaginary part of a complex quantity

..) R

g vector fumction defined by equation (29)

S )

3 vector with components x, ¥y, and W

-

ﬁ(P),Q(Q) complex-valued vector functions of variables P and Qq,
respectively; components denoted by subscripts 1, 2,
and 3 . .

- ‘ -+

k(r) unit vector normal to tangential direction of £_(r)

3(Y) vector function gefinedfby equation (33)

o=y + 1o complex variable

® imaginary part of complex variable o

FORMUTATION OF PROBLEM

The present report is concerned with a stationary shock wave pro-
duced by a two-dimensional body placed in a uniform supersonic stream.
The fluid 1s assumed to be an ideal gas and-the process on any material
particle, to be adiabatic. Thus, the entropy is constant along a
streamline while it may vary from one streamline to the next.

Let the coordinate axes be so chosen that the incoming free stream
is along ﬁhe x-axis and that the shape of the shock wave is represented

by

x = [e(ea0s) for0] + %, W

*
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where U 1s the free-stream velocity and p; 1is the gas density in
the free stream. As the shock wave must asymptotically become the

Mach llpe gt infinity, the function F'(plUy) —_ i%/qM12 -~ 1 as
y —> te, where M; 18 the free-stream Mach number. . ‘
Entropy of flow after shock waves.- The stream function ¥(x,y)

may be regarded as the amount of the flow across a curve Joining the
point (x,y) to the point (xo,o). It must therefore be continuous across

the shock wave because of the continulty of the mass. Thus, on the
shock wave,

¥(x,5) = pyUy (2)

The slope of the shock wave is therefore

tan T = %% =.1/F'(¢) (3)

Since the entropy is constant along a étreamline, the pressure-density
relation for the flow after the shock wave can be written in the form

p/p? = G(llr)pl/pl7 | ()

where 7 18 the ratio of the specific heats of the fluid, Py and p

are, respectively, the pressures before and after the shock, and P

and p are corresponding densities of the fluid. This entropy function
G(¥) 1s now to be expressed in terms of the function F(¥) which deter-
mines the shock shape. From the shock conditions, 1t can be immediately
shown that

27M12 sinéT + (1 -7) (5)

q/Pl = S 1 >
(r + )my2 sin®T

p/py = (6)

2+ (y - l)M.l2 sin®T
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Therefore

a(y) =
(7 + )7 1+ (F1)2

2 12 ’
1 27My’ +(1’7)B+(F ):l {1?2E+(F')2] +7-1

. (7N
where F' = F'(y). Thus one has the formula

¢ (V) /a(¥) = ZF"(‘lf)F"(‘V)[ L 5 + A 5 - 1 2:] (8a)
1+ (F") 1+ m(F') 1+ (F')

where

1= (1 - 9)(em? -7+ 1) (8b)

= 2[[§+ (7 - 1] (8¢)

Fundamental differential equation for stream function.- By the
definition of the stream function given above,

> (9)

From the equation of vorticity (reference 3)

d d ‘ :
.a—x(;])'- Ilrx) + -a-;(% \{fy) = =G (’l’)p7Pl/(7 - 1)917 (10)

and Bernoulli's equation along a streamline

2 2

‘1?+ (11)
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it follows that -

where

@ = u? + v2 (13)
c® = yp/n ‘ (1k)

and Oy is the maximum velocity of the flow. ' This equation is here-

after referred to as the fundamental equation for compressible flow
after the curved stationmary shock wave given by equation (1). Imn it,
the quantities wu, v, c, and p are known functions of ¢, .,

and V¥, determined by equations (9), (4), and (11).

It should be noted that equation (12) is equivalent to Crocco's
equation (reference 5) for vortex motion. In fact, one is immediately
derived from the other by the relation between the stream function
defined above and that defined by Crocco.

Shock conditions expressed in terms of derivatives of stream

function.- Let s and n be, respectively, the tangential and the
normal directions at a point on the shock wave. Then

ﬂ
¥y = gg cos T + gg sin 1
’ (15)
Wy = %% sin T - %% cos T )

From continuity of the flow across the shock it follows that

= pq, = plU sin T
(16)

3
Js
g% = -pgy = -pU cO8 T



8 NACA TN 2364

where g and q, are, respectively, the tangential and the normal

components of the velocity of the flow immediately after the shock
wave. Thus, by virtue of equations (15) and (6), the shock conditions
in terms of the derivatives of the stream function are transformed into
the following form:

e I o b ) el 8
=p
= 1+ (F')Z(plUy) 1+ (F' )2(plUy) + I ; : M2
> (17)

(F')e(plUy) 1+ (F')%(p,Uy) - M2 ,

¥y = PU - U — .
1+ (F') (plUy) 1+ (F')?‘(plUy) + 1= Ml2
w

Mathematical formulation of problem.- The problem of finding the
two-dimensional~flow pattern after a stationary shock wave given by
equation (1) is then to find the solution of the fundamental equa-
tion (12) with the conditions (17) on the shock wave. It is therefore
a Cauchy initial-value problem if the shock wave is given.

However, it should be noted that the stream function W(X,Y) thus
obtained is, in general, many-valued if it is extended continuously (in
physical variables) into the whole region after the shock wave. In the
actual case, it is expected that other shock waves are formed near the
tail of the body. Therefore the solution, once obtained, is limited
by such shocks. The flow farther downstream should be treated separately.
In fact, the flow after the shock wave can be treated separately for the
subsonic region and the supersonic region, °

Determination of physical variables.- After ¥(x,y) is found, the
density distribution may be obtained from equations (%) and (11). The
velocity components may then be gotten from equation (9). It should be
remarked that this determination is two-valued: One value of the
density corresponds to supersonic flow and the other, to subsonic flow.
The location of the sonic line is therefore essential. When a solution
is obtained for V¥ (whether exact or approximate) the sonic line is
immediately given by the condition that the two roots in Bernoulli's
equation for the density p are equal. This gives

7-1 y-1f 2 +M2>1 e L
(ﬁ) Cr+1y+1 H/ew) Tt
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Substituting back into Bernoulli's equation, it follows that

RS S G - 18a)
- x[ev)] .
where
2 y+1
2 —_— 2~ 2 —
q ISP -1
2 = H) - 2 m) (130

and cj 1s the free-stream velocity of sound.

In order that the sonic line thus determined should pass through
the sonic point immediately after the shock wave, wkz +rw&? must
satisfy the exact shock condition on the shock wave.

Approximgtions.- In the following discussions, restrictions are put
on the shock shape such that

(1) The shock has its nose at (xo,o) where the shock is normal;
thet is, F'(0) = 0.

(2) F(y) 4is analytic in the real variable y; moreover, F"(y) is
positive. -

(3) The shock wave tends to.a Mach line asymptotically.

From the first two assumptions it follows that F'(y) 1s a monotonic
function of y and yF'(y) 2 0. From the last assumption, it is seen

)1/2.

readily that 0 SF'(y) £ (M12 -1

The effect of vorticity generated by the shock can be better under-
stood by examining the term in the right-hand side of the fundamental
equation (12) for V. From equations (8), the term on the right-hand

side of equation (12) is a product of F" (W)p qM and a nondimensional
quantity. By a straightforward calculation this nondimensional factor is

2

=

F' (V) 1. (E )2 .

 (u
1+(F)2| M- ( qM}[ _1+(F)27
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A rough estimation shows that it is bounded by

, 17w | I A Gl (02 - 2%
s ] e

2y

It 1s therefore clear that, for the free-stream Mach number M; close
to 1, a perturbation process based on the parameter

(4,2 - 1)5/i/(M12 B} 2257%)( 24 - ? 1)

can be performed. The term in the right-hand side of equation (12)
can be neglected for the first spproximstion. In fact, for any Mach

number M; in the general ca.se,l the nondimensional factor is an
infinitesimal of first order for small values of V¥ and of second

order for large values of Y. The assumption of neglecting the effect
of vorticity is perhaps reasonable for a certain range of M; greater

than unity.

In the following discussion the effect of vorticity will be neg-
lected in finding approximate solutions for the stream function. The
subsonic region will now be treated analytically by finding approximate
solutions for the stream function. The exact shock conditions will be
satisfied but the fundamental equation (12) will be satisfied only with
the following approximations:

(1) The effect of vorticity is neglected

(2) Equation (12) is simplified by an approximate estimation of u/c
and v/c as explicit functions wk and wy

This estimation follows the same line as the one first suggested by‘
Chaplygin (reference 6). The idea has been successfully applied by
many authors (references 7 to 10) for analytic treatment of subsonic
flows,

%An upper bound for the nondimensional factor in terms of My only
can be determined The following is a trivial one:

2 - 27 - 252 ® + 55)
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It may further be suggested that the solution of the simplified
equation for  satisfying the exact shock conditions may also serve
as a first approximation for the supersonic region in the case of a
thin body with a blunt nose. For such a case, the streamlines are
likely to be nearly straight in the supersonic region. As the approxi-
mate solution of  obtained from the above considerations represents
the true geometrical pattern of streamlines on the shock wave, far away
from the body, and near to it, it may be expected to be a reasonable
approximation in the whole region, However, this can be applied only
if the two-dimensional body is an analytic curve. In case the body has
a discontinuity, the flow downstream should be treated separately from
the Mach line passing through this point.

After having obtained the first approximation (covering both the
subspnic and the supersonic regions), an iteration procedure may then
be carried out. This is done by evaluating all quantities in equa-
tion (12) except Vi, ka, and Wyy from the approximate solution
and then solving the linear equation for V. ;

AN ANAIYTIC APPROXIMATE SOLUTION IN THE LARGE

FOR SUBSONIC REGION

Solution of simplified differential equation.- The solution of

equation (12) satisfying the initial conditions (17) on the shock will
now be approximately obtained by finding the stream function V(x,y)
which satisfies the following simplified equation:

vy ¥ by vy
" (Poco) Fox 2o A PoCo ?yy -° (19)

po Co

with the same initial conditions (17). Equation (19) cen be written as

i WX +% . 1~l"y
- @loted | TR - (Fro2ecd)

where .

=0 (20)

2y 2y ¥2 S  (21)
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Equation (20) implies the existence of a function @ such that

-4

¢x = wy ‘ il
q - (g2/p02c02)
1 (22)
¢y == ¥
Ji - (g2/p02002) J

It is now readily seen that the gbove development is completely equiv-
alent to the Chaplygin theory. However, the usual physical interpre-
tations of ¢ and the partial derivatives of ¢ and V¥ are not
implied. The formal relations, however, remain unchanged.

It is well-known that the function ¢ satisfies the equation for
the minimgl surface and that the solution for ¢ and ¥ can be

expressed as
a

y - 1f = 20,cn(Q) (23)
- dz = dx + 1 dy
=%+FE (2k)

where h(Q) is an.arbitrary analytic function, and
vx - iwy

“pozco2 - &+ PoCo

To satisfy the initial condiéions (17), it is found convenieqt to apply
the theory for minimal surfaces developed by Weierstrass, Bjorling,

Q= (25)
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and Schwarz (see reference 11). The final solutionAmay be given in the
following differential form:

’

-
r(- ) “~
(@ -12) +12 (r)2 1+ (F')2 - M2
"2 142 7y-1.,2
dx = Re 7F'(p1UP)+1 1+(F) l+(F) +TM]- -
(1_k2) + K2 (7*)2 D+(F')2’l'11?l[1+(F')2+7M12]
:'-"'(1"')"2 . _ 2 . 4
_ E.+(F )2+Z_2_lMlE_l | /
\
[ ) -
ﬁ F'[&~+k2 1 1+ (Fr)2 - my
l+(F')2 W2, r7-1.,2
dy = Re 41+1 1y () T TdP r(26)
(1 k2)+k2 (F1)2 E.+(F')2-MI§E+(Fn)2+7MlQJ
- — — .
] 1+ (F) »E+(F.)2+7__2_1Mlﬂ |
) ~
'Z%lM]_EF’
w:;““* 1+ (P02 I i —+ 19 ap
1 (1—k2)+k2 LF')QQE:' (F')Q‘MIEJ§+(F')2+7M12J
1+ (F) ' y -1 2
- E+(F )2+ ) Ml%]
v

where Re denotes the real part of a complex quantity,

k = plU/poc0 _
and
P -7 (o)

and P ig a complex running variable. It may be noted that this solu-

tion involves only the function F'(plUy) for the slope of the shock
wave.
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Weierstrass' formuls for minimal surfaces.- Weierstrass' formula
for minimal surfaces (reference 11) reads as follows: '

1

x=Re |ifey - tpyt - Lot g 1
x=Re -t -t h
.1+ t2
y = Im[i(fl - Ay fl")] L (27)
w = Re E(—fl' + “bfl"}]
where f; 1is an analytic function of the complex variable +t.
Now
‘ 1 m . ) -
t 56 (t) at = ah (1/it) (28)

From equation (27) the following relation is immediately derived:

it dh (1/it) + dh (1/it)/it

+

dz = dx + 1 dy

AY

Since dw = Re itfy"'(t) dt Re 2i dh () = df/p,c,, the above rela-
tion reduces to equation (24) if one sets Q = 1/it.

Shock conditions and Bjorling problem.- As far as differential
equation (19) is concerned, the parametric function h(Q) in expres-
sion (24) always generates an exact solution.. There are still shock
conditions to be satisfied. These conditions (17) raise the problem of
finding the solution in the large of the Cauchy initial-value problem
for minimal surfaces. Geometrically, it is now reduced to the problem
of finding the minimal surface-when a piece of space curve and the
tangent plane at every point 6n the curve are prescribed. The curve is

.* i
‘given in &(x,y,w) space with the following parametric representation

in vector form ‘
> |F p1Uy)
fo = [:(plU )’ ¥s B[eoc, (29)
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| “Jy B gldv

with @y and @, determined-by equations (22) and (17). The
direction of the normal of the tangent plane at a point

[%(plUy)/plU, y; Bf%— is given by'(¢x;¢y;-poCO) This geometrical

problem was first suggested by Bjorling in 1844 and solved by Schwarz
in 187h4. \

where

Schwarz formula.- Let g be a vector with components X, ¥,

and w. ILet n(P) and g(q) be complex-valued vector functions of
the complex variables P and Q, respectiyglyzé The Schwarz formula for
the BJorling problem with the given curve ¢ = go(r) and the normgl of

the tangent plane at any point on the curve ®(r) such that ‘:2 =1
and K X ?;' = 0, where E;' is the tangent vector of the curve, is
(reference 11): o ‘
+ - >
26 = n(P) + £(Q) ‘ (30)
vhere
-
@n(P) = dBy(P) + 3[R(P) x a€o(P) -~ (31)
12 ] '
#(@) - (@) - R x @y(@)] (32)

From the last two relations it follows immediastely that both vectors
are isotropic lines; that is,

)%= (F)2=0
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As the minimal surface should EF real one has only to take @Q as the
complex conjugate of P and {, as the complex conjugate vector
function of 1.

Exact solution of simplified differential equation satisfying
shock conditions.- Now since

Ay

B -]

pjU on the shock wave, it follows that

g
<
g
+
-«
¥
]

Vl - (@ I 902002)’ 41 - (8]p,2c,2) " PoCo

= =(y) dy (33)

- > |1- p1U’4"y/902°o2 -F o+ plU"L(.x/pozco2 p1U

&
X
o8
e
[

dy

where Wx and Wy are assigned values according to equation (17).

Let the components of this vector be denoted by [%1(y), 1(¥) 5 ﬂ3(yi] dy.

If F(plUy) is an analytic function of y and possesses an ana-

lytic extension in a domain in the o-plane, where o =y + iw, then
equation (30) is the differential form ,

2 a?: Re Ei?o(P) + 1}>(Pﬂdl= (34)
Or,

1- plnyy/pozco2

Vﬁ - (g2’p02c055

@x = Re |F'(pUR) + 1 (35)
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-F* (p1UP) + pluwx/poacoe

dl - (gE/DOECOE)

dy = Re {1+ i ap (36)

ag = Re + 1p U} dP (37)

Vi - (gZIPOQCOZ)

From the definition of h(Q), by equation (23), and relation (28), it
is evident that the last equation in equations (27) can also be written
as

WP+ 3ay 1££™ () at (38)

PoCo

Because of the fact that 7(P) in equation (31) is an isotropic line
when P = Constant, or (nl')g(P) + (n2')2(P) + (n3')2(P) = 0, one can

find an analytic relation which transforms t dinto P so0 that

2 -1

1,'(P) P =1 5

£ (%) at (39)

fl"'(t) dt (40)

and

n3' (P) aP = 1t£;™ (t) at (41)

e e mr = ————— et e = e s A i e e e,
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Therefore equation (37) can also be written as the following:

ag + 1 ay = E;yl?' (p,UP) - q:x]/\[l - (e2[002co?) + ipyU b aP (h2)

The final solution (26) is now obtained by substituting shock condi-
tions (17) into equatioms (35), (36), and (L2).

Massachusetts Institute of Technology
Cambridge, Mass., July 6, 1949
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